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Abstract

Due to the rapid development of mobile technologies, nowadays mobile devices

are not expensive and almost every person can easily possess a mobile de-

vice. This fact boosts investments in mobile applications, among which are the

person-to-person mobile payment applications. These applications are pretty

sensitive in that they are related to monetary transactions, thus involving strict

security and privacy requirements. To this purpose, we propose a secure proto-

col leveraging online social network connections to help users enforce their trust

preferences locally to make a money transfer. The protocol exploits mobile

ad-hoc network as a communication means. To improve the network perfor-

mance by still preserving data security and user privacy, we also propose some

optimization strategies to decrease the number of tokensets sent over mobile

ad-hoc network. The experimental results demonstrate the effectiveness of our

proposal.
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1. Introduction

Hardware techniques for mobile devices have been developed with a rapid

speed2,3 with the result of reducing the cost of mobile devices. Today owning a

mobile device is no longer a problem. Consequently, the market of mobile appli-

cations has been growing up tremendously to take advantage of this increasing5

number of mobile users4,5. Among mobile applications, mobile-based person-

to-person (P2P) payments have been rapidly growing. As Gartner forecasts6, in

2016 there will be 448 million mobile payment users in a market that worths 617

billion USD. Despite the success of these new digital P2P payment methods, we

believe that, to fully enable this rise of digital wallets, relevant security and pri-10

vacy challenges need to be addressed. At this purpose, in [1] we have proposed

a secure protocol, namely SmartPay, to exploit the available social network con-

nections to support users in making decisions behind mobile P2P payments. In

particular, SmartPay leveraged social connections to help the payers, i.e., those

people who give credit to someone, to judge if the person asking money can be15

considered trusted. More precisely, SmartPay exploits social networks to verify

how payer and payee are connected in the social graph. Based on this infor-

mation and the payer trust preferences, SmartPay suggests whether the money

transfer should be authorized or not. A key aspect of SmartPay is the decentral-

ized protocol exploited to gather information on the social path connecting the20

payer and the payee, which is then encoded into a data structure, called tokenset.

Furthermore, SmartPay exploits a light cryptographic algorithm, namely binary

Elliptic Curve Cryptography (ECC) algorithm [2] to protect the privacy of user

relationship information in the traversed path. This makes SmartPay able to

privately aggregate information on the traversed paths (i.e., depth, trust, rela-25

tionship type), without revealing any information on traversed edges. However,

2http://www.dayintechhistory.com/news/evolving-cell-phone-1973-2014/.
3http://www.businessinsider.com/the-evolution-of-the-cell-phone-2013-1?op=1.
4http://wearenative.in/news/smartphones-still-room-for-growth/
5http://www.smartinsights.com/mobile-marketing/app-marketing/mobile-app-statistics/
6http://www.gartner.com/newsroom/id/2028315
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in [1] we did not cope with the communication means for exchanging tokensets

among SmartPay users. It is only assumed that the communication means is

Internet (e.g., using emails or sockets). In this paper, we want to explore alterna-

tive communication means. In particular, we propose to exploit Mobile Ad-hoc30

NETwork (MANET). MANET has been investigated since the 1990’s and re-

cent predictions about the future research trends in MANET determined that it

has potentials to be continuously developed [3], [4]. Since MANET’s properties

fit the realistic requirements of many scenarios, such as availability, cost saving,

self-organized and infrastructure-less architecture, the applicability of MANET35

is extremely large. For instance, MANET applications have been developed on

tactical networks, emergency, as well as education, context aware services, en-

tertainment, military services [5]. Additionally, several applications have been

deployed over MANET. For instance, available locations of users on their mobile

devices have been exploited, among others, by Foursquare7 and Gowalla8, which40

are location-based social networking services for mobile devices, and by Last.fm

Festival9 that suggests a list of music festivals to users near the event locations.

As further relevant examples, TerraNet10 supports mobile phone calls without

a connection through a cell tower; Mobile Chedar [6] is a middleware prototype

with a mobile peer-to-peer learning environment application using Bluetooth;45

AdSocial [7] is a software platform supporting social network applications in ad

hoc networks targeting small-scale scenarios, such as friends playing a game on

the train or co-workers sharing calendar information, as well as, conference par-

ticipants establishing voice-video calls, chat, or play games. In addition, we can

cite MobiClique [8], a mobile social software, that allows people to maintain50

and to extend their online social networks through opportunistic connections

between neighboring devices, and What’s Up [9] an application providing spon-

taneous social networks in ad hoc networks, such as conferences and expositions.

7https://foursquare.com/about
8http://gowalla.com/
9http://www.last.fm/festivals

10http://terranet.se/
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As witnessed by the above mentioned services, plenty of MANET applications

have been deployed successfully, and particularly for scenarios where local net-55

works with a high density of users are available (e.g., a conference room, library,

supermarket, stadium, park, university campus, company buildings). This typi-

cal MANET scenario fits well the one in which P2P mobile payment applications

can be used. Hence, we strongly believe that there is a need of deploying P2P

payments over MANET. For this reason, in this paper, we investigate how to60

deploy SmartPay over MANET. To our knowledge, this work is the first one

exploiting social network relationships for P2P payments over MANET.

Despite the benefits, this new communication means has open challenges

that need to be addressed [4] [10]. Among them, the most relevant are: (1)

privacy and security, (2) energy efficiency, and (3) network performance. The65

deployment of SmartPay over MANET has to cope with all these issues. Regard-

ing privacy and security, the exchange of tokensets through MANET rises new

challenges w.r.t. of those investigated in [1]. Indeed, according to the MANET

protocol, a tokenset might be forwarded through several mobile users before

reaching the destination. Those users are not involved in the path traversal and70

thus do not have to infer any information about the payment transaction as

well as aggregate relationship information. In addition, in [1] the payer identity

was not kept private, as the proposed solution exploits the payer’s public key.

In contrast, in this paper we present a solution suitable to MANET commu-

nication that provides a more secure protocol than the one in [1]. Regarding75

issue (2), we use cryptographic algorithms on elliptic curves, that is, binary

ECC [2] and Elliptic Curve Digital Signature Algorithm (ECDSA) [11]. These

binary cryptographic algorithms make the mobile devices able to perform ef-

ficient computations and consume less energy. With respect to (3), SmartPay

adopts a strategy inspired by k -anonymity to optimize network performance.80

However, selecting a reasonable value of k to make the network consumption

effective is not easy. In particular, in case k is large, network performance is

similar to the one of broadcasting techniques, but privacy is preserved more

strongly. In case k is small, the bandwidth consumption is low but privacy
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cannot be preserved effectively. To overcome this problem, in this paper, we85

propose an optimization strategy exploiting secure comparison algorithms so

as to reduce the flooding of tokensets in MANET. In particular, our algorithm

allows to evaluate encrypted relationship information inside a tokenset to be

forwarded in the network.

The remainder of the paper is organized as follows. Background knowledge90

is introduced in Section 2. Section 3 describes related work. An overview

of SmartPay is reported in Section 4. Section 5 presents issues and possible

solutions to deploy SmartPay over MANET. Section 6 describes the expanded

SmartPay protocol over MANET. Section 7 presents the optimization strategy.

Experimental results are reported in Section 8. Security properties are discussed95

in Section 9. Finally, Section 10 concludes the paper.

2. Background

2.1. MANET (Mobile Ad-hoc NETwork)

MANET is a collection of many devices equipped with wireless communica-

tions and networking capabilities that make them able to communicate with each100

other [12]. This can be done through a direct communication, if the destination

of the message is within the radio range of the sender. In general, the radio

range depends on the communication means. For instance, a Bluetooth device

has a radio range of 10m, whereas a Wi-Fi device has a radio range of 100m

[13]. In case two devices are out of their radio ranges, a protocol is initialized105

aiming at forwarding the message through intermediate nodes until reaching the

final destination. For this purpose, each device, hereafter node, keeps track of

the set of neighbors that fall into its radio range. Since nodes might leave or

enter the other’s radio range, the MANET topology can change in a very dy-

namic way. These changes might split the network into different subnetworks,110

called partitions, among which there might not exist a possible routing path.

To support the communication among nodes in different partitions, large-scale

MANETs make use of connectors. These are proxies responsible for forwarding

5



messages from a partition to another. A connector can be a fixed device (such

as an Access Point (AP), a server, or a switch that functions as a gateway) [14],115

or mobile nodes/robots [15]. When a node joins the network, it receives from

its neighbors information about available connectors. When a node wants to

transmit a message to a node in another partition, it forwards the message to

connectors in its connectors list.

t t0

Figure 1: MANET partitions and radio ranges at different times

Example 1. Figure 1 illustrates a MANET at two different time instants, i.e.,120

t0 and t1. Each node has a radio range, denoted by the surrounding dotted circle.

Partitions are denoted by a solid circle. When a node enters in another dotted

circle, the two nodes can communicate directly using Wi-Fi standards, i.e., IEEE

802.11. At time t0, v0 can directly contact v1 since it is in v1’s radio range and

vice versa. This direct communication is reported as an edge connecting v0 and125

v1, denoted as e(v0, v1). In contrast, v0 can contact v3 indirectly by a protocol

forwarding the message through a routing path, e.g., v0 → v2 → v3. As reported

in Figure 1, at time t0 all mobile nodes v0, v1, v2, v3, v4 set up a partition, say p1,

since all of them can communicate with each other directly or indirectly. Figure

1 reports that v3 and v4 leave p1 at time t1 and form the second partition, say130

p2. The two partitions, i.e., p1, p2, communicate with each other through the

connector, that is, C1.
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2.2. Homomorphic Encryption

Homomorphic encryption [16] is a form of encryption where all computations

are carried out on ciphertexts. In our protocol, we use the homomorphic Elliptic135

Curve Cryptography (ECC) [2] based on the binary finite field Fm
2 . As such,

we assume that each node vi using SmartPay over MANET has a pair of a

public key, i.e., (ki ·B) and a private key, i.e., ki, where B is the base point on

the elliptic curve (E). Let us remind ECC encryption/decryption operations

by assuming that Alice wishes to send a message M to Bob, and Bob has a140

pair of keys (kBob, kBob ·B). To encrypt M , Alice generates E(M) = (Y 1, Y 2),

Y 1 = rAlice · B, Y 2 = M + rAlice · (kBob · B), where rAlice is a random integer

generated by Alice. Given E(M) Bob uses his private key kBob to decrypt M

as follows: D(E(M)) = Y 2− kBob · Y 1.

3. Related work145

In recent years, many P2P payment systems have been deployed. For in-

stance, Bitcoin [17] and Zerocoin [18], which are decentralized e-cash systems.

However, it has been showed that Bitcoin has some privacy issues [19] due to the

adopted pseudonym technique [20] used to avoid the disclosure of real user iden-

tities. Zerocoin proposes a crypto-based solution to guarantee the anonymity of150

Bitcoin transactions. However, the goal of SmartPay is different from the one

of Bitcoin and Zerocoin in that SmartPay does not cover an e-cash transaction.

Rather, it helps to judge whether a payment transaction should or should not

be authorized based on the relationship path between payer and payee.

[21] proposes a secure electronic payment system over MANET, called PayFlux.155

PayFlux applies SPKI (Simple Public Key Infrastructure) to improve the per-

formance of processing encryption/decryption. However, PayFlux only works

with direct connections (i.e., one hop) between the payer and the payee. In [22],

[23], authors proposed a secure payment protocol for a vehicular ad hoc network

between a client and a merchant. [22] uses symmetric cryptography whereas [23]160

exploits ECC and hash functions. These aim to improve the performance, while
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still preserving user privacy and data security. However, [21] [22] [23] focus on

direct connections and e-cash transfers, whereas, our work considers both direct

and indirect connections and makes trust preference enforcement available for

users to decide a money transfer.165

[24] addresses P2P payments in multiple hop wireless networks as well. Each

node in the protocol is assigned a trust value. A packet of payment request is

routed through the network according to these trust values. It implies that

the packet moves through nodes having the highest trust values. After every

successful transaction, these trust values are updated. Whereas, our protocol170

works on relationship information of every user retrieved from their social net-

works. Beside, [24] deployed their decentralized-based framework in wireless

networks, however, they still need a third party for data authentication. In

contrast, we do not need the support of any third party, our proposal is fully

decentralized. Moreover, they use only hash function for data authentication175

while our proposal makes data more confidential by using both hash functions

and encryption algorithms. Additionally, in our proposal intermediate nodes

do not know the source and the destination node to avoid private information

leakage from a malicious intermediate node while the intermediates in [24] can

know the source and the destination nodes.180

In [25], a local secure scheme supports nodes in evaluating the trust between

two nodes, node i and node j, in an ad hoc network, when node i requests

node j for a communication. In particular, node i retrieves a set of common

connected nodes of node i and node j, then requests common nodes to send to

node i their reputation recommendation on node j. To retrieve this intersection185

and to let each node in the protocol unaware of the set of nodes of the other

side, [25] adopted the homomorphic Paillier’s encryption and polynomial inter-

section calculation. In contrast, we address the more general issue of calculating

trust between two indirect nodes and we apply the homomorphic Elliptic Curve

Cryptography algorithm to aggregate the trust values on a path.190
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4. SmartPay Overview

4.1. Trust-driven mobile person-to-person payment

Figure 2: Trust-driven mobile Person-to-Person payments

In [1], we proposed a light cryptographic protocol for mobile P2P payment

systems, called SmartPay. SmartPay is able to preserve user privacy, to protect

data security and to optimize the performance for mobile devices. As introduced195

in Section 1, SmartPay operates over available social networks. An overview of

the architecture is presented in Figure 2. SmartPay periodically synchronizes

with user’s social network accounts so as to extract their contact lists. These lists

are merged into a unique list, called Unified Contact List (UCL), which can be

either locally stored or stored into a cloud public storage service. SmartPay also200

provides users with the possibility of further classifying their relationships by

specifying, for each of them, the type of the relationship, e.g., parent, colleague,

classmate, etc., defined according to a standard vocabulary, like FOAF [27],11

11We uses FOAF in this work since FOAF is an ontology dictionary of named properties
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and a trust value, representing the strength of the relationship.

Payer’s trust preferences are expressed as conditions on the relationship the205

payee has to have in order to be considered enough trusted by the payer. Hence,

each SmartPay user locally specifies one or more trust preferences, defined as

TP = (P, TC), where P indicates the role (i.e., payer or payee) of the considered

user, whereas TC denotes a set of trust conditions tc. Each trust condition tc

is defined as a tuple (rt, dmax, tmin) describing the trust requirements. More210

precisely, tc states that between the trust preference owner and the other party

there should exist a direct or indirect relationship12 of type rt with a maximum

depth dmax and a trust value greater than or equal to tmin.
13

Alice

Bob

Evans

Carl

Haris

Martin
(just-met, 

0.3)

(just-met, 
0.2)

Davis
Walker

0.3)

Figure 3: An example of a portion of a social graph

Example 2. Consider the social graph depicted in Figure 3, where edges are

labeled with the trust level and the type of the relationship existing between215

the connecting nodes. Assume that Evans sets a trust preference TP = (payer,

Friend, 3, 0.6), stating that he accepts to be payer for users that are connected

with him by a direct or an indirect relationship of type ”Friend” with maximum

and classes of social relationship using W3C’s RDF technology, an open Web standard, as
well as, is promoted for decentralized approaches [28].

12An indirect relationship connects two nodes by a path including more than one edge, all
with the same relationship type.

13Literature offers several algorithms to compute the trust value between two indirectly
connected nodes [29]. Here, we assume that the trust value of an indirect relationship is
computed as multiplication of the trust values of each single edge in the path connecting the
two nodes.
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depth 3, and minimum trust 0.6. Suppose that Bob and Haris ask Evans a small

amount of money. Let us first consider the case of Haris. As Figure 3 reports,220

between Bob and Haris there does not exist any indirect relationship of type

”Friend”, since there is no connecting path between them with all edges labeled

as Friend. As such, Haris does not satisfy Evans trust preference, and therefore

the money transfer is denied. In contrast, between Bob and Evans there exists

an indirect friend relationship (i.e., the path Bob → Alice → Evans in Figure225

3). Moreover, the trust and the depth of the path are respectively 0.64 and 2.

Hence, Bob satisfies the trust preference defined by Evans.

Trust preference evaluation at the payer side requires to discover a path

connecting the two involved users. Because the relationship information is lo-

cally stored in every node, in [1] we proposed a distributed protocol executed230

through a collaboration among the traversed nodes in the social graph to find

a path from the payer to the payee. When finding a path, the protocol collects

the relationship information (i.e., relationship type, trust, depth) as well. The

collected information is stored locally in a data structure, called tokenset. In [1],

the protocol is assumed to be launched by the payer for the sake of simplicity.235

The tokenset is first sent to the payer’s contacts at which it continues to be

aggregated and propagated. This step is repeated until the tokenset reaches

the payee. In the next section, we introduce the SmartPay protocol in further

details.

4.2. Decentralized path finding protocol240

Let us first consider the path trust value and assume that a node vi which

partially constitutes a traversed path p = {v0, · · · , vi, · · · , vp} from the payer

(i.e., v0) to the payee (i.e., vp). We recall that in [1] every node in the protocol

knows the public key parameters of the payer’s needed for the encryption. A

summary of the protocol in [1] is presented in what follows:245

1. Once the payer receives a request of a money transfer from a payee, the

payer initializes a tokenset including distinct tokens, one for each of the
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path property to be verified (i.e., trust token, and relationship type token,

respectively). The payer then forwards the tokenset to his/her contacts.

2. When an intermediate node vi receives the tokenset, it updates every to-250

ken in a privacy preserving way to add the information on depth and

trust of the edge being traversed. As an example of trust aggregation

done on the social path connecting node v0 and node vi, that is, E(0)(i) =

Σi−1
α=0E(α)(α+1) where E(α)(α+1) is the encryption of the trust value be-

tween node vα and node vα+1, and E(α)(α+1) = (r(α)(α+1) ·B,PTr(α)(α+1)
+255

r(α)(α+1) · kvp
· B) where r(α)(α+1) is a random number generated locally

at node vα and PTr(α)(α+1)

14 is a point on the elliptic curve mapped from

a trust value between node vα and node vα+1, i.e., Tr(α)(α+1). Thus,

E(0)(i) = (Σi−1
α=0(r(α)(α+1) ·B), (Σi−1

α=0PTr(α)(α+1)
+Σi−1

α=0(r(α)(α+1) ·kvp ·B))).

Thus, we can see that the trust on edges of the path from the payer to260

node vi are aggregated into the trust token. The process for the type

aggregation is similar. Then, vi forwards the updated tokenset to its con-

tacts.

3. The process in step 2 is repeated until the tokenset reaches the payee,

which, in turn, sends the tokenset back to the payer.265

4. The payer decrypts tokens in the received tokenset to gain the needed

values. As an example of the trust decryption with the private key kvp

of the payer , D(E(0)(i)) = (Σi−1
α=0PTr(α)(α+1)

+Σi−1
α=0(r(α)(α+1) · kvp ·B))−

((Σi−1
α=0(r(α)(α+1)·B))·kvp) = Σi−1

α=0PTr(α)(α+1)
, a point on the elliptic curve.

Then, the payer needs to decode this point and obtain the bit string in270

the binary field Fm
2 , that is, Σi−1

α=0Tr(α)(α+1).

The type decryption is made similarly. Then, the payer retrieves the trust

preference defined for the payee and validates the trust conditions. If type

and trust evaluations succeed, the payer can calculate the depth from the

14Each value representing the relationship information (i.e., trust, depth, type) is a bit
string in Fm

2 . Since the computing operators of ECC are done on points in elliptic curves,
these bit strings are needed to be mapped onto points on a binary elliptic curve [30] [31] [32].
Due to this reason, for simplicity and the additive property of the mapping, a message W is
mapped to a point on (E) as P = W ·B, where B is the base point.
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type token. As in [1], the final aggregate type is indeed a product of the275

depth (i.e., a number of hops from the payer to the payee) and the type

defined in the local trust conditions of the payer. Hence, the depth can be

simply computed by dividing the final aggregate type by the type retrieved

from the local trust condition. We can do calculation on depth and type

because depth is a number while the type before processed is mapped280

onto a defined number in the binary field Fm
2 at the payer side, and this

number must be unique. For example, the type ′′friend′′ is mapped onto

the number 1001110110011b (i.e., 5043d).

SmartPay adopted the Tidal trust algorithm [26] to calculate the trust value

between two nodes. Moreover, to reduce the bandwidth consumption due to the285

tokensets propagation, we adopted a solution inspired by k -anonymity [33]. At

this purpose, we have to note that, to greatly reduce the tokenset propagation,

each intermediate node should forward the tokenset through only the edges

labeled with the relationship type required by the trust conditions, as the final

goal is indeed the discovery of that type of path. However, this naive approach290

would imply to make each intermediate node aware of the relationship type

required by the condition, and thus able to infer that the payer is connected at

least with a node with this type of relationship. To avoid this problem, in [1]

we assumed that the payer selects a set of k relationship types, denoted as Arel,

including the type required by the trust condition. Then, each intermediate node295

has to forward the tokenset only to contacts with which it has a relationship of

one of the types in Arel. This solution has the advantage of reducing tokenset

propagation by at the same time, avoiding the inference of the relationship in

the trust condition. Therefore, SmartPay makes nodes able to aggregate trust,

depth, and relationship type, while, at the same time, protecting the privacy of300

this information.
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5. SmartPay over MANET: Issues and Solutions

To be enforced in MANET, SmartPay needs to be expanded so as to han-

dle MANET communications. In order to distinguish users in SmartPay social

network and in MANET, we organize the structure of Smartpay over MANET305

into two layers, that is, SmartPay Social Network Layer (SSNL) and Smartpay

MANET Layer (SMNL). Users in the SSNL are called contacts, whereas users

in the SMNL are called nodes. Hereafter, let vSi denote a contact i, and vMi de-

note a node i. One contact in the SSNL is mapped onto one node in the SMNL,

and vice versa. SSNL includes contacts operating according to the SmartPay310

protocol discussed in Section 4. In particular, the SSNL is responsible for ag-

gregating path information and propagating the tokenset to the other contacts.

Whereas, the SMNL includes nodes (physical mobile devices) and communica-

tions in MANET. MANET communications are set up according to requests

on SSNL. The SMNL is in charge of forwarding the tokenset to neighbors, or315

stopping the tokenset when the destination is reached. It is important to note

that while contacts in SSNL are mapped on nodes in SMNL, the same does

not hold for edges in the corresponding graphs. Indeed, in a MANET graph,

edges are defined based on nodes’ radio ranges, and not based on relationship

information like in SSNL. As such, the protocol for discovering a path in a social320

graph defined in [1] cannot be applied as it is in the MANET graph. Indeed,

the tokenset flows might follow a different path in the MANET layer, due to the

availability and the position of nodes at that moment, as the following example

clarifies.

Example 3. Let us consider the scenario of a MANET created among mobile325

devices of spectators of a football match at a big stadium. Let us assume some

of them are connected in a social network graph as in Figure 3. As presented

in Figure 4, this MANET consists of several partitions, that are connected

together by means of a set of connectors (wireless access points) placed around

the stadium. Let us consider four friends: Bob, Evans, Carl, and Alice, that330

come to the stadium to follow the match, but they sit in different stadium areas.
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Evans

Bob
Carl

Davis

Alice

Figure 4: Communication at a stadium

Figure 5: SmartPay protocol over MANET

15



Assume that Bob is sitting next to Evans, Carl is a little far from Evans and

Bob, while Alice is at the farthest place from the others. Based on the distance,

they are located into two different partitions (see Figure 4). Evans and Bob

can communicate directly because they are in the radio range of each other.335

If Bob wants to communicate with Carl, he must communicate through two

intermediate nodes, that is, Evans and Davis. If Alice wants to communicate

with Bob, her message needs to be sent to a connector that then forwards

the message to Bob’s partition. Continuing with this scenario, let us consider

the social graph and MANET described in Figure 5. As depicted in Figure 5,340

connections in SSNL and SMNL are different. Suppose that Bob wants to buy

snack and beverage, and thus he asks Evans for lending him money by making a

direct request. Evans and Bob are not connected in SSNL, Evans does not know

Bob very well, so he initializes and sends a SmartPay tokenset to Bob through

the SmartPay application installed on his cell phone. The tokenset propagates345

from Evans to Bob through SSNL path Evans→Alice→Bob. Whereas, in the

SMNL the tokensets go directly to Bob through the path Evans→Bob.

Due to the SSNL communication layer, the SmartPay protocol as described

in [1] cannot be directly applied, as further information needs to be inserted in

the tokenset in order to route it in the MANET network. As it will be described350

in the next section, the revised tokenset has still to ensure privacy and security

properties.

6. Expanded Smartpay Protocol (ESP)

Let us consider the three main roles with which nodes participate in the

protocol, that is, the payer, the payee, and the intermediate nodes.355

The Payee. Let us assume that a user vpayee wants to borrow an amount

of money from another user, say vpayer. He/she first needs to send vpayer a

request. By using SmartPay, the payer will generate a tokenset which is propa-

gated in the social graph until it reaches the payee. The tokenset has to contain

some information that makes the payee able to determine he/she is the final360
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destination of the received tokenset or this relates to another execution of ESP.

The naive idea is to insert the payee identity in the tokenset. Yet, the payee

identity is a personal information. Thus, we use an additional information,

called Validator, which is generated as the encryption with the public key of the

payee, i.e., (Kpayee · B), of some local information gathered from the payee’s365

mobile device. These are, as an example, the MAC address and the timestamp

of the instant when the payee makes a request to the payer. The timestamp is

used as a session identity to distinguish the payment request at the payee side,

so that the payee can recognize exactly the request relating to the payer. Before

encrypting the combination of MAC address and timestamp, to improve the370

robustness of Validator against adversaries (see Section 9), we take the combi-

nation of MAC address and timestamp apart into groups of bytes, then permute

randomly positions of these groups of bytes by applying the Fisher-Yates shuffle

algorithm [34]. Note that the random arguments used for permutation are held

by the payee, so that the payee can reuse them for its identity data recovery.375

After that, the payee encrypts the permuted combination of local information

by its public key to gain Validator. Then, Validator is appended at the end of

the ESP tokenset. Also notice that Validator is not modified through the path

from the payer to the payee.

Definition 1. (Validator). Let vMpayee be the node who makes the payment380

request, MAvM
payee

be the MAC address of vMpayee, tvM
payee

be the timestamp

when vMpayee makes the request, (KvM
payee

· B) be the public key of vMpayee. The

Validator made by vMpayee is defined as follows:

V alidatorvM
payee

= Enc(KvM
payee

·B)(shuffle([MAvM
payee

||tvM
payee

]))

where shuffle() is the Fisher-Yates shuffle algorithm, ’||’ is an operation con-385

catenating two bit strings.

vpayee inserts the Validator into the request and sends the request to vpayer.

Example 4. Let us continue with Example 3 (see Figure 5), and suppose once

again that Bob wants to borrow money from Evans. Therefore, he needs to gen-
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erate the request along with the Validator and sends them to Evans. Bob first re-390

trieves the request timestamp, i.e., tBobM , and the MAC address, i.e., MABobM ,

from his mobile device. Then, he combines them together, creates a random

permutation on the obtained combination, and then encrypts the resulted per-

mutation with his public key to generate the Validator: V alidatorBobM =

Enc(KBobM ·B)(shuffle[MABobM ||tBobM ]). Bob sends then the Validator and395

the payment request to Evans.

After that, vpayee waits for an ESP tokenset from vpayer through his/her

contacts. When vpayee receives an ESP tokenset including his/her Validator,

he/she sends that ESP tokenset back to the payer and waits for the payment

result.400

Example 5. Consider Example 4, when Bob receives a tokenset with the Val-

idator Enc(KBobM ·B)(shuffle([MABobM ||tBobM ])), he can use his private key

(i.e., KBobM ) to successfully decrypt the Validator, and verifies that he is the

destination of the tokenset. Then, Bob stops forwarding the tokenset to his

neighbors.405

The Payer. In defining ESP we wish to cope with an open issue in [1].

Indeed, in order to aggregate information into the tokenset, in [1] we assumed

that each user knows the public keys of other participants. However, this makes

users involved in the SmartPay execution able to infer who is the payer. In

ESP, we wish to protect this information as well. Therefore, we assume that410

the payer, i.e., vSpayer, generates a pair of temporary ECC public and private

keys, i.e., (KtempvS
payer

· B) and KtempvS
payer

, for each new transaction, to be

used instead of its original public key so that intermediate nodes cannot infer

the payer identity. Temporary keys have to be protected so as to avoid other

contacts to misuse them. Beside, in order to avoid that intermediate nodes do415

aggregation on the same tokenset received from the same SSNL node in case

the sending node can be subject of a replay attack (see Section 9), we insert the

information of session identity (ID) between two SSNL nodes, called sessionID.
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sessionID can include an ID of the receiving node and a number standing for

the session order. Beside, to let the receiving nodes know the sending node, we420

insert the ID of the sending node, namely ID(vi), into the tokenset. Both ID(vi)

and sessionID should be protected as the temporary public key of the payer.

At this purpose, we require that the temporary public key, the sessionID and

ID(vi) are encrypted by the intermediate contacts who have used it to aggregate

the relationship information with the official public key of the SSNL contact to425

which the tokenset has to be sent. The above extra information is encapsulated

into a data structure, called secure key, and inserted into the head of the ESP

tokenset.

Definition 2. (Secure Key). Let vSi be the node processing the ESP tokenset,

vSi+1 be a contact of vSi , (KvS
i
· B) be the public key of vSi , (KvS

i+1
· B) be the430

public key of the neighbor vSi+1, sessionID(vS
i ,vS

i+1)
be the session identity of vSi

and vSi+1. SecureKey between vSi and vSi+1 is defined as follows:

SecureKey(vS
i ,vS

i+1)
= Enc(K

vS
i+1
·B)(ID(vi)||(KtempvS

payer
·B)

||sessionID(vS
i ,vS

i+1)
)

Example 6. Let us continue with Example 4. After receiving the request and435

Validator from Bob, Evans generates a pair of temporary public and private

keys, (KtempEvans ·B,KtempEvans), to be used for the current payment transac-

tion only. Evans keeps the temporary private key, and propagates the temporary

public key to his contacts, that is, Alice and Walker. In particular, Evans en-

crypts his temporary public key, the session IDs between him and them (i.e.,440

sessionID(Evans,Alice), sessionID(Evans,Walker)), and his ID (i.e., ID(Evans))

with their public keys, i.e., (KAlice ·B) and (KWalker ·B) respectively, and ob-

tains two distinguished encryptions. From the above information, Evans creates

two secure keys, as follows:

• SecureKey(Evans,Alice) = Enc(KAlice·B)(ID(Evans)||KtempEvans · B)445

||sessionID(Evans,Alice))
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• SecureKey(Evans,Walker) = Enc(KWalker·B)(ID(Evans)||KtempEvans ·B)

||sessionID(Evans,Walker))

The secure key (Definition 2), the SmartPay tokenset as defined in [1], and

the Validator (Definition 1) are then enveloped into a unique data structure,450

namely, the ESP tokenset. Moreover, to guarantee the integrity of the content

of elements of ESP tokenset, i.e., no intermediate nodes can modify the public

key encryption, a signature of ESP tokenset encryption is made with the private

key of the sending contact using the Elliptic Curve Digital Signature Algorithm

(ECDSA) algorithm [11]. An ESP tokenset is formally defined as follows:455

Definition 3. (ESP Tokenset). Let vSi be a node, vSi+1 be one of vSi ’s contacts,

vSpayer be the payer, vMpayee be the payee. Validator is created by vMpayee as in

Definition 1. SecureKey is created by vSi as in Definition 2, SPTokenset is the

tokenset as defined in [1]. Hence, the ESP tokenset is defined as follows:

TK(vS
payer,v

S
i+1)

= [combi||signK
vS
i

(combi)]460

where

combi = [SecureKey(vS
i ,vS

i+1)
||(SPTokenSet(vS

payer,v
S
i+1)

)

||V alidatorvM
payee

]

and sign() is the function that vSi uses for generating the signature of the

encryption of ESP tokenset with its private key.465

Example 7. Let us continue with Example 6. After creating the secure key,

Evans detaches Validator from the received request from Bob, and creates two

tokensets for his two contacts on SSNL, i.e., Alice and Walker, as follows:

• TK(Evans,Alice) = combi||signKEvans
(combi), where combi = [SecureKey(Evans,Alice)

||SPTokenset(Evans,Alice)||V alidatorBob].470

• TK(Evans,Walker) = combi||signKEvans
(combi) where combi = [SecureKey(Evans,Walker)

||SPTokenset(Evans,Walker)||V alidatorBob].
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where SecureKey(Evans,Alice), SecureKey(Evans,Walker) are like in Example 6,

whereas Validator is like in Example 4.

vpayer sends the initial ESP tokenset to its contacts and waits for the final475

ESP tokenset from vpayee. Once received, vpayer decrypts the SmartPay to-

kenset, and enforces the trust preferences according to the Smartpay protocol

(as described in Section 4).

Intermediate nodes. Before presenting in details the steps executed by an

intermediate node in the ESP protocol, let us remind that, when nodes move480

around, MANET can be grouped into many partitions. In order for them to

connect to each other, connectors forward ESP tokensets from a partition to

nodes of another partitions in their radio ranges. In a MANET partition, nodes

that do not have any neighbor to propagate the tokenset are called border nodes.

These nodes send the received ESP tokenset to connectors located in their radio485

range. There might be more than one border node in a partition.
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Figure 6: Social Network Layer and Manet Layer Cooperation
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Example 8. Let us continue with Example 3 by assuming that the MANET

is divided into two partitions, as in Figure 6. Suppose that Walker stays in

partition p1 and receives from Haris an ESP tokenset whose destination is Bob.

However, Walker does not have any neighbor in p1, so he forwards the ESP490

tokenset to connector C1. In this example, Walker is a border node. When C1

receives the ESP tokenset from Walker, it forwards the received ESP tokenset

to nodes located in the radio range of C1, that is, nodes in partition p2. In this

example, it is assumed that Alice is a node in p2 staying in the radio range of

C1, so Alice is a border node as well. She can receive the ESP tokenset from495

p1 through C1. Alice continues to propagate the received ESP tokenset to her

contacts. The ESP tokenset is then propagated until it arrives to Bob.

Now let us describe the operation done by intermediate nodes, encoded by

Algorithm 1. Let us assume that the intermediate node vi receives an ESP to-

kenset, i.e., TK(vpayer,vi), from node vi−1. Let TK(vi,vi+1) be the ESP token ag-500

gregated with the information of the relationship between vi and vi+1 by vi. The

result of Algorithm 1 is stored into a variable, namely i resProc. This variable

can assume one of the values in the set { SENT PAY ER, NO CONTACT,

SUCCESS FORWARD, SUCCESS AGGR PROP, DUP TKSET,

CHANGED CONTENT}, where SENT PAYER means that the ESP to-505

kenset is sent back to the payer, NO CONTACT means that there does not

exist any contact for vi to forward the ESP tokenset to, SUCCESS FORWARD

means that vi forwards the ESP tokenset to its neighbors, SUCCESS AGGR PROP

means that vi aggregates the information on the relationship between itself and

its contacts into the received ESP tokenset and forwards the aggregate tokenset510

to its contacts, DUP TKSET means that the tokenset was processed before,

whereas, CHANGED CONTENT means that the tokenset content has been

changed on the communication channel. The values SUCCESS AUTH and

FAILED AUTH are used in the algorithm to show the result of tokenset au-

thentication. SUCC AUTH shows that the tokenset is authenticated success-515

fully, whereas FAILED AUTH means that the authentication fails. We also
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use SUCCESS DECRYPT to describe the status where SecureKey decryption

is successful.

We assume that each user on SSNL has the public keys of his/her contacts. vi

first decrypts the SecureKey received tokenset with its private key (line 2) so as520

to determine if it is the intermediate node needing to aggregate the relationship

information between itself and vi−1. In case the decryption fails, vi is not

the contact of the sender, vi needs to transfer the tokenset to its neighbors

or connectors on SMNL (line 33). If the decryption works out (line 3), vi

is the node needing to do aggregation. However, it also needs to verify the525

integrity of the received tokenset and that the tokenset is truly from its SSNL

contact, by using the public key of its SSNL contact (line 5). However, vi does

not know which contact sent the tokenset to it. Therefore to get the public

key of its sending contact, vi retrieves the ID of the sending contact in the

decryption. Assuming that, the found ID is of vi−1, i.e., ID(vi−1), it then looks530

for the public key of vi−1 (line 4). Then vi authenticates the tokenset. If the

authentication works out, it means that the integrity of the received tokenset

is guaranteed and the tokenset content has been not changed. Hence, vi needs

to check if the tokenset is duplicated based on the SessionID in SecureKey

(line 7). If the authentication or the duplication checking fail, the tokenset535

is dropped (lines 23, 28). If the duplication checking is successful, the next

step is to evaluate the Validator, if vi is the destination of the tokenset (line

8). In particular, vi uses its private key to decrypt the Validator and then

recovers the shuffled value in the decrypted Validator and sees if it makes sense

or not. If the result contains the local information of vi, it proves that vi is the540

destination of the tokenset, it then sends the tokenset back to the payer (line

9). Otherwise, vi obtains the contact list (line 12) by retrieving from its local

storage, if it has contacts it does aggregation between itself and its contacts

by calling function aggregateTokenset() (line 13) (see Function 2), then calls

function sendOnSMNL() (line 14) (see Function 3) to propagate the tokenset.545

If it does not have any contact, the social path through it is dead-end, so it

drops the tokenset (line 17).
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Algorithm 1 processTokenset()

Input: TK(vpayer,vi)

Output: i resProc
1: Let seckey be decryption of TK(vpayer,vi).SecureKey.
2: resDec = decryptECC(TK(vpayer,vi).SecureKey,Kvi

, seckey);
3: if (resDec == SUCCESS DECRY PT ) then
4: Kvi−1 ·B = findContactPbKey(secKey.ID(vi−1));
5: resAuthen = authenKey(TK(vpayer,vi), (Kvi−1 ·B));
6: if (resAuthen == SUCCESS AUTH) then
7: if isDuplicate(seckey.SessionID(vi−1,vi)) then
8: if (isDestination(TK(vpayer,vi).V alidator,Kvi)) then
9: send(TK(vpayer,vi), vpayer);

10: i resProc = SENT PAY ER;
11: else
12: if (hasContacts()) then
13: TK(vpayer,vi+1) = aggregateTokenset(TK(vpayer,vi));
14: i resProc = sendOnSMNL(TK(vpayer,vi+1));
15: return i resProc;
16: else
17: Drop(TK(vpayer,vi));
18: i resProc = NO CONTACT ;
19: return i resProc;
20: end if
21: end if
22: else
23: Drop(TK(vpayer,vi));
24: i resProc = DUP TKSET ;
25: return i resProc;
26: end if
27: else
28: Drop(TK(vpayer,vi);
29: i resProc = FAILED AUTH;
30: return i resProc;
31: end if
32: end if
33: i resProc = sendOnSMNL(TK(vpayer,vi));
34: return i resProc;
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Function 2 aggregateTokenset()

Input: TK(vpayer,vi)

Output: TK(vpayer,vi+1)

1: TK(vi,vi+1).SecureKey = encryptECC(concatenate(ID(vi+1),Ktempvpayer
·

B, generateSessionID(vi, vi+1)),Kvi+1
·B);

2: TK(vi,vi+1).SPTokenset
= SmartPay.createTokenset(TKvpayer,vi .SPTokenset,Ktempvpayer ·B);

3: TK(vi,vi+1).V alidator = TK(vpayer,vi).V alidator;
4: TK(vpayer,vi+1) = concatenate(TK(vi,vi+1), signECDSA(TK(vi,vi+1),Kvi));
5: return TK(vpayer,vi+1);

Additionally, function aggregateTokenset() receives an input, that is, a to-

kenset from vi−1. It then returns an output, that is, a tokenset TK(vpayer,vi+1)

aggregated the relationship information on the edge connecting it and its con-550

tact, i.e., vi+1. vi generates the session ID between it and vi+1 then concatenates

the ID of vi+1, the temporary public key of the payer, and the session ID. After

that, vi encrypts this concatenation by the public key of vi+1 (line 1). Then, vi

aggregates the relationship information between it and vi+1, using the tempo-

rary public key of the payer, by calling function SmartPay.createTokenset() as555

in [1] (line 2). The Validator is reused from the received tokenset without being

modified (line 3). After that, vi creates a signature of the aggregate tokenset

and concatenate the new tokenset and its signature (line 4).

Function 3 sendOnSMNL()

Input: TK(vpayer,vj)

Output: resSend
1: resSend = false;
2: if (hasNeighbor()) then
3: resSend = send(TK(vpayer,vj), list manet neighbor);
4: else
5: resSend = send(TK(vpayer,vj), list manet connector);
6: end if
7: return resSend;

Function sendOnSMNL() receives a tokenset TK(vpayer,vj). vi verifies if it
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has any neighbors (line 2) by the neighborhood discovery protocol.15 In case the560

verification works out, vi obtains a list of neighbors (i.e., list manet neighbor),

then transfers the tokenset to neighbors in list manet neighbor (line 3). Oth-

erwise, hasNeighbor() returns a list of connectors (i.e., list manet connector)

to vi, then vi sends the tokenset to its connectors (line 5).

The following example clarifies how Algorithm 1 works.565

Example 9. Let us continue with Example 3 and Figure 6. For the sake of

simplicity, we do not consider any trust preference, so the relationship informa-

tion is removed from the figures depicting the steps in the example. Consider

the path on SSNL connecting Bob to Evans, that is, Evans→Alice→Bob, where

Evans is the payer, and Bob is the payee. After Bob makes a request to Evans for570

an amount of money, Evans sends the initial ESP tokenset back to Bob. There

is only one SMNL path from Evans to Bob, that is, Evans→Bob. According to

Algorithm 1, the following steps are performed:

1. Bob sends the payment request and Validator to Evans (see Figure 7).

Bob Evans

Figure 7: Step 1 of Example 9

2. Evans receives the request from Bob (see Figure 8), then it is:575

15Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP) (RFC
6130) https://tools.ietf.org/html/rfc6130.
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Figure 9: Step 3 of Example 9

• Evans generates a pair of temporary keys (KtempEvans·B,KtempEvans)

only used for this payment transaction.

• Evans initializes the ESP tokensets for his two directly connected con-

tacts on SSNL, i.e., Alice andWalker, to obtain TK1 = TK(Evans,Alice)

and TK2 = TK(Evans,Walker).580

3. Evans then looks for the list of his neighbors to forward these two ESP
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tokensets. Evans has three neighbors, that is, Martin, Bob, and Davis.

Hence, he sends these two ESP tokensets to each of them.
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Figure 10: Step 4 of Example 9

4. Martin, Bob, and Davis receive two ESP tokensets. They start to verify if

they are contacts of Evans in the social graph (line 5 of Algorithm 1). It585

results that they are not Evans’ contacts (see step 4a in Figure 10-a). Bob,

Martin, and Davis thus look for their neighbors (line 12), and forward the

received ESP tokensets to them without changing the content (line 33).

Bob sends two ESP tokensets to Haris while Martin and Davis send two

ESP tokensets to Carl (see step 4b in Figure 10-b).590

5. After receiving the ESP tokensets, Carl and Haris verify if they are con-

tacts of Evans by decrypting the SecureKey (line 2 of Algorithm 1) (see

step 5a in Figure 11-a). The function fails, therefore, Carl and Haris

forward the ESP tokensets to their neighbors (see step 5b in Figure 11-

b). Haris’ neighbor is Walker, thus, Haris transfers the ESP tokensets to595

Walker. Carl does not have neighbors, so he sends the ESP tokensets to

connectors in his radio range. Here we assume that Carl’s connector is
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Figure 11: Step 5 of Example 9

C1.

6. Walker receives two ESP tokensets from Haris. He checks if he is Evans’

contact (line 2 of Algorithm 1) and the decryption succeeds (see step600

6a in Figure 12-a). Then he authenticates if the tokenset content has

been changed (line 5 of Algorithm 1). Assume that the tokenset has been

changed on the communication channel between Walker and Haris. Hence,

Walker checks if this tokenset from Evans was processed before (line 7 of

Algorithm 1). Assume that the tokenset has been already processed. So,605

Walker continues to verify if he is the payee of Evans (line 8) and the check

fails. Therefore, Walker continues to search his contacts (line 12) and it

retrieves Alice. Walker aggregates the relationship information between

him and Alice to gain TK3 = TK(Evans,Alice) (line 13). Then, Walker

needs to propagate the tokenset (line 14), he looks for his neighbors, he610

finds out that he does not have neighbors. So, he forwards to C1 the ESP

tokensets, including the updated ESP tokenset TK3 = TK(Evans,Alice)

and the remaining tokenset TK1 from Haris (see step 6b in Figure 12-b).
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Figure 12: Step 6 of Example 9

7. Connector C1 sends the received ESP tokensets from Carl and Walker to

partition p2. In p2, there is only one node, that is, Alice (see step 7 in615

Figure 13).

8. Two ESP tokensets from Walker and one from Carl are for Alice. Another

one is not for Alice, that is, TK2 = TK(Evans,Walker) from Carl. So, Alice

should forward TK2 to her neighbors without modifying its content, but

Alice does not have any neighbor. So, she forwards TK2 to C1.620

30



Alice

Bob

Evans

Davis

Carl
Haris

Walker

Martin

Alice
Martin

Carl

Davis

Evans

Bob

Haris

Walker

Figure 13: Step 7 of Example 9
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Figure 14: Step 8 of Example 9

9. With the remaining tokensets, Alice searches the list of her contacts (line

12) and finds out six contacts that have to update their contents, that

is, Bob, Carl, Davis, Haris, Martin, and Evans. She updates the received

ESP tokensets (line 13), and obtains TK4 = TK(Evans,Bob) = TK1 +
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Figure 15: Step 9 of Example 9

TK(Alice,Bob), TK5 = TK(Evans,Carl) = TK1 + TK(Alice,Carl), TK6 =625

TK(Evans,Davis) = TK1 + TK(Alice,Davis), TK7 = TK(Evans,Haris) =

TK1+TK(Alice,Haris), TK8 = TK(Evans,Martin) = TK1+TK(Alice,Martin),

TK9 = TK(Evans,Walker) = TK1+TK(Alice,Walker), TK10 = TK(Evans,Bob) =

TK3 + TK(Alice,Bob), TK11 = TK(Evans,Carl) = TK3 + TK(Alice,Carl),

TK12 = TK(Evans,Davis) = TK3+TK(Alice,Davis), TK13 = TK(Evans,Haris) =630

TK3+TK(Alice,Haris), TK14 = TK(Evans,Martin) = TK3+TK(Alice,Martin),

TK15 = TK(Evans,Walker) = TK3+TK(Alice,Walker). Alice wants to send

them to her neighbors (line 14), so searches for them, but she does not

have any neighbor. Therefore, she forwards all the tokensets to connector

C1 which is in her radio range (see step 9 in Figure 15).635

10. C1 receives the ESP tokensets from Alice, and sends all of them to Walker

and Carl who are border nodes of partition p1. Let us first consider Walker.

Carl will repeat similar steps to process the received ESP tokensets (see

step 10 in Figure 16).

11. Walker receives the ESP tokensets from C1. He decrypts the SecureKey640
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Figure 16: Step 10 of Example 9

of all received tokensets to check if there is any tokenset for him to update

(lines 2, 5 of Algorithm 1). But no tokenset is for him. Then, he forwards

all of them to Haris who is his neighbor (line 33) (see step 11a in Figure 17-

a). Among the received ESP tokensets from Walker, there are tokensets

for Haris to update, that is, TK7 and TK13. Haris forwards the other645

tokensets to Bob as Bob is his neighbor (see step 11b in Figure 17-b).

12. Bob decrypts SecureKey of the received tokensets (line 2 of Algorithm 1),

there is one tokenset for him. He authenticates if the tokenset has been

changed on the communication channel (line 5 of Algorithm 1), then he

also checks if the tokenset has been processed (line 7 of Algorithm 1).650

Then, he validates if he is the destination of the received ESP tokensets

(line 8). He is the destination of two ESP tokensets TK4 and TK10. (see

step 12 in Figure 18).
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Figure 17: Step 11 of Example 9
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Figure 18: Step 12 of Example 9

13. Bob sends ESP tokensets to Evans (line 9) (see step 13 in Figure 19).
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Bob Evans

Figure 19: Step 13 of Example 9

7. Condition-driven flooding655

As presented in Section 4, SmartPay exploits k -anonymity [33] to reduce

the number of distributed tokensets. Relationship information privacy as well

as the number of propagated tokensets depend on the value of k. Selecting a

reasonable value of k to make the network consumption effective is not easy.

In particular, in case k is large, network performance is similar to the one of660

broadcasting techniques, but privacy is preserved more strongly. In case k is

small, the bandwidth consumption is low but privacy cannot be preserved effec-

tively. Therefore, in order to preserve privacy, and, at the same time, improve

network performance, here we propose an alternative approach exploiting secure

comparison techniques.665

Let us first recall that the goal of finding a social path connecting the payee

and the payer is to verify if the relationship between the payee and the payer

satisfies the specified trust preferences. Let us consider a trust condition tc =

(rt, dmax, tmin) in a trust preference of the payer. Finding a valid social path

connecting the payer and the payee requires to evaluate whether the relationship670

type of the path is equal to rt, the aggregated trust value is greater than or

equal to tmin, and the depth of the path is less than or equal to dmax. As

such, if an intermediate node is able to detect that one of these conditions is

not satisfied, it is able to terminate the ESP tokenset propagation. Thus, the

number of propagated ESP tokensets is significantly reduced. For this purpose,675

there is the need of a way that enables intermediate nodes to privately verify

trust conditions. In [1], since the trust condition verification is enforced at the
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payer side, only the payer can read trust conditions. In this paper, we assume

that each intermediate node receives trust conditions encrypted with the payer’s

temporary public key, so they cannot learn plain texts of trust conditions. With680

respect to the protocol explained in Section 6, we add an additional step. The

intermediate node, say vi, has to evaluate the updated ESP tokensets based on

the encrypted trust conditions by exploiting the proposed secure comparison

approach. Based on the results, vi, propagates only the updated ESP tokensets

that verify the trust conditions.685

Example 10. Let us continue with Example 3. Assume that an intermediate

node vi receives an ESP tokenset along with the encryption of trust condition

tc = (Friend, 3, 0.6). After receiving the request from Bob, Evans initializes

two ESP tokensets for his contacts, Alice and Walker, where the trust values

are 0.8 and 0.9, respectively. These trust values and the depths (i.e., 1, as they690

are direct friends) satisfy tc. However, the type of the relationship in the initial

ESP tokenset is Friend between Alice and Evans, but is Sibling between Evans

and Walker. Hence, Evans only sends the ESP tokenset to Alice. The number of

forwarded ESP tokensets is reduced by half. In turn, Alice has six contacts, that

is, Bob, Carl, Haris, Martin, Davis, and Walker. She creates six duplicates of the695

received ESP tokenset, then updates them with the relationship information of

the edges between herself and these contacts. After doing the secure comparison

between the encrypted trust conditions and each of the updated ESP tokensets,

it results that, among these six contacts, Alice chooses Bob and Martin to

propagate the updated ESP tokensets since the relationship information in the700

ESP tokensets for both Bob and Martin are (Friend, 2, 0.64). Here, the number

of forwarded ESP tokensets is also reduced. In the four other updated ESP

tokensets, the type of the relationship is not Friend. Therefore, Alice sends the

updated ESP tokensets only to Bob and Martin.

In order to do a comparison between the encrypted trust conditions and the705

encrypted values in the ESP tokenset, we adopt the secure comparison scheme

proposed by F. Kerschbaum et al. in [35]. The authors proposed a general
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framework for a secure comparison between x0 and x1. All participants involved

in this scheme do not know the real values of x0 and x1. They just receive

the encrypted values, denoted as E(x0) and E(x1). This framework exploits710

homomorphic encryption, and the authors used RSA (1024-bit key length) for

the experiment. However, RSA consumes a lot of memory, CPU and time on

encrypting and decrypting, so it is not suitable for the mobile environment.

To cope with this issue, we adopt the original scheme in [35], and apply the

homomorphic binary ECC algorithm into it.715

Secure comparison is done on trust, depth, and type of the relationship.

Among these three components, trust and depth are numbers, whereas, the

type needs to be converted into a number in the range [1, 35]. This range is

chosen according to the quantity of relationship types defined in the widely

used FOAF vocabulary [27]. The basic idea is that, for each intermediate node,720

instead of forwarding a received ESP tokenset to several contacts, this node

applies the secure comparison scheme in [35] to compare the encrypted trust,

depth, type of the relationship in the received tokenset with the respective

encrypted threshold in the trust condition. Based on the result, the node can

decide to which contacts the ESP tokenset should be forwarded.725

Let us denote trust, depth, type in a trust condition as tmin, dmax, rt, re-

spectively. These are encrypted with the payer’s temporary public key (i.e.,

(kvpayer · B)), and denoted respectively as Evpayer (tmin), Evpayer (dmax), and

Evpayer
(rt). The encryptions are sent from the payer to its contacts, say vi.

Let T(vpayer,vi) be the ESP tokenset containing the encryption of trust, depth,730

and type which are collected in the social path from the payer to vi. Let

T(vpayer,vi).trust, T(vpayer,vi).depth, and T(vpayer,vi).rt, Evpayer (T(vpayer,vi).trust),

Evpayer
(T(vpayer,vi).depth), Evpayer

(T(vpayer,vi).rt) be respectively trust, depth

and type tokenset in T(vpayer,vi) and their corresponding encryptions with the

payer’s public key. Let us first consider secure comparison on trust. Secure735

comparison on depth and relationship type are managed in a similar way. Let

us assume that vi sends Evpayer
(T(vpayer,vi).trust) to vi+1. Node vi+1 aggre-

gates T(vi,vi+1).trust (i.e., the trust value of the edge between vi and vi+1 into
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Evpayer (T(vpayer,vi).trust) and obtains Evpayer (T(vpayer,vi+1).trust). Then, it ap-

plies the scheme in [35] to decide if this updated ESP tokenset can be propagated740

to its contacts by comparing two encryptions of the trust threshold and the ag-

gregate trust in the tokenset. To do this comparison, vi+1 randomizes two large

numbers r, r′ in N, and calculates the value of Evpayer (c) with the following

equation, where E(c) is an encryption for the computation at the next round

as described in [35].745

Evpayer
(c) = r · (Evpayer

(tmin)− Evpayer
(T(vpayer,vj).trust))

− Evpayer (r
′)

= (r · r0 ·B − r · r1 ·B − r′′ ·B, (r · (tmin

− T(vpayer,vj).trust)− r′) + (r · r0 − r · r1 − r′′)

· kvpayer
·B)

= Evpayer (r · (tmin − T(vpayer,vj).trust)− r′)

(1)

where r0, r1, r
′′ are the randoms generated while the encryptions are done.

The basic idea of Formula 1 is to compute d = (tmin − T(vpayer,vi+1).trust).

d is used for comparing tmin and T(vpayer,vi+1).trust. If d < 0, it implies that

tmin < T(vpayer,vi+1).trust; otherwise, tmin ≥ T(vpayer,vi+1).trust. However, to

hide d, d is multiplied with a random number r to obtain a multiplication750

m = d.r. Then, to prevent the factoring of the result [36], r′ is added to

m and we obtain c = d.r + r′. Here, we can replace the addition with the

subtraction, and we have c = d.r − r′. Actually r, r′ are used for obfuscating

the value of d. However, the goal is to do a secure comparison between tmin

and T(vpayer,vi+1).trust. Therefore, c must be encrypted, and we obtain E(c) as755

above.

After computing Evpayer
(c), vi+1 sends (a1, a2, a3) = (Evi+1

(0), Evi+1
(1), Evpayer

(c))

back to vi, where Evi+1(0), Evi+1(1) are encryptions of values ’0’ and ’1’ with

vi+1’s public key. Then, vi also randomizes two large numbers ri, r
′
i, and flips
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a coin b ∈ {0, 1}, then re-calculates (a1, a2, a3):

a1 = a1+b + Evi(0);

a2 = a2−b + Evi(0);

a3 = (−1)b·ri(a3) + (−1)(1−b) · r′i · Evi(1);

(2)

b is known only to vi. vi sends (a1, a2, a3) back to vi+1. Then, vi and vi+1

collaboratively checks a3. At vi side, if a3 < 0, we have the boolean expression

[tmin ≤ T(vpayer,vi+1).trust] = 1 − b; otherwise, we have the boolean expression

[tmin ≤ T(vpayer,vi+1).trust] = b. With the value of b, vi can learn the result of760

the comparison. Notice that the boolean expression is 0 when it is false, and it

is 1 when it is true.

This secure comparison makes it possible to reduce a large number of mes-

sages going through the network, as shown in the performance results reported

in Section 8.2.765

8. Experiments

This section presents the performance of ESP protocol and the flooding

optimization.

8.1. ESP Performance

In order to prove the efficiency of ESP, we measure the time an ESP tokenset770

spends reaching the payee from the payer in several network configurations.

Network configurations are defined based on three parameters: the SMNL and

SSNL topologies, the wireless network bandwidth, and the adopted encryption

algorithms (i.e., their key sizes).

Regarding the first parameter, we set up several SMNL and SSNL topologies,775

by varying the number of contacts/nodes from 4 to 17. These results in 16 dif-

ferent network configurations, which are summarized in Table 1, where network

1 has the shortest path, including 3 SSNL contacts, and a 8 SMNL hop distance

between every 2 SSNL contacts; whereas, network 16 has the longest relationship
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path, including 9 SSNL contacts, and a 14 SMNL node distance between every780

2 SSNL contacts. With respect to the second parameter, we simulate different

wireless network bandwidths. In general, MANET nodes transmit data through

different wireless standards. We deploy experiments assuming nodes exploit the

popular wireless standard IEEE 802.11a/b/g, and their respective bit rates of

54/11/24Mbps. The third parameter that might impact the performance is the785

payload size of ESP tokenset. Since we are using encryption schemes, the pay-

load might vary based on the key sizes of the adopted algorithms. In particular,

we deploy the UDP protocol for exchanging the tokensets between two mobile

devices, because its speed and small payload fit well MANET. The UDP pay-

load size varies according to the key sizes of ECC and ECDSA algorithms. In790

this experiment, we select four ECC key sizes, that is, 163, 283, 409, 571 bits,

and two ECDSA key sizes, that is, 384, 521 bits.

Table 1: Network configurations

Network
Number of SSNL

contacts

Number of SMNL
nodes between two

SSNL contacts

Total number of
SMNL nodes

N1 3 8 17
N2 5 8 33
N3 7 8 49
N4 9 8 65
N5 3 10 21
N6 5 10 41
N7 7 10 61
N8 9 10 81
N9 3 12 25
N10 5 12 49
N11 7 12 73
N12 9 12 97
N13 3 14 29
N14 5 14 57
N15 7 14 85
N16 9 14 113

Table 2 shows the UDP payload size by using different combination of ECC

and ECDSA key sizes. The smallest UDP payload size is 446 bytes, using 163 bit

ECC key size and 384 bit ECDSA key size, whereas, the greatest UDP payload795

size is 1298 bytes, using 571 bit ECC key size and 521 bit ECDSA key size.
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These payload sizes do not exceed the limit of a UDP packet size in MANET,

i.e., 1460 bytes. Hence, the ESP tokensets are not segmented into more than

one packet.

Table 2: UDP payload size with different ECC and ECDSA key sizes

ECC key size (Bit) ECDSA key size (Bit) UDP payload size (Byte)

163 384 446
283 384 686
409 384 942
571 384 1263
163 521 482
283 521 722
409 521 978
571 521 1298

We used OmneT++16 and INET framework17 to set up the different net-800

work configurations. OMNeT++ is a component-based C++ simulation library

and framework for building network simulators for a variety of application do-

mains, such as sensor networks, wireless ad-hoc networks, photonic networks,

etc. Whereas, the INET Framework is an open-source communication network

simulation package for the OMNeT++ simulation environment. The INET805

Framework contains models for several Internet protocols, such as UDP, TCP,

SCTP, IP, IPv6, Ethernet, PPP, IEEE 802.11, MPLS, OSPF. By using these

tools, we conduct experiments on physical resources including Duo Core CPU

4GHz, 4GB RAM, 64-bit Windows 7.

We measure the delay (ms) spent on transmitting an ESP tokenset from the810

payer to the payee according to different parameters values. Particularly, the

transmission delay includes the time of aggregating an ESP tokenset at each

SSNL contact and the time of propagating ESP between SMNL nodes. The

experimental results are reported in Figure 20. According to Figure 20, we can

see that at the same bit rate the transmission delays in cases of 384 bit ECDSA815

are higher than the ones of 521 bit ECDSA, and the transmission delays with

16http://www.omnetpp.org/
17http://inet.omnetpp.org/
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a) b)

c) d)

e) f)

Figure 20: Transmission delay of an ESP tokenset vs key size of ECC and ECDSA vs bit
rate standard: a) 11Mbps bitrate and 384bit ECDSA; b) 11Mbps bit rate and 521bit

ECDSA; c) 24Mbps bitrate and 384bit ECDSA; d) 24Mbps bit rate and 521bit ECDSA; e)
54Mbps bitrate and 384bit ECDSA; f) 54Mbps bit rate and 521bit ECDSA.
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a) b)

Figure 21: A comparison between NFO, KAO, and CDF
a) Number of traversed nodes per second; b) Number of flooding tokens per second

increasing ECC key sizes are rising. In the worst case (i.e., 11Mbps bitrate,

521 bit ECDSA and 571 bit ECC), the transmission delay for an ESP tokenset

to move through 113 SMNL nodes and to aggregate relationship information

among 8 SSNL contacts is 1710,4 ms (approximately 1.7s). This transmission820

delay is reasonable with MANET performance requirement. Therefore, this

result proves that the proposed ESP has an effective performance.

8.2. Condition-driven Flooding Optimization

In order to prove the efficiency of the proposed flooding optimization method,

we measure the number of generated tokensets propagated through the network825

and the number of nodes traversed by tokensets, by exploiting the solution pro-

posed in this paper, i.e., the Conditional Driven F looding (CDF), the solution

proposed in [1], i.e., the K -Anonymity based Optimization (KAO), and the one

without any optimization, i.e., the N o F looding Optimization (NFO). The ex-

periment is performed on the trust value. If the trust threshold is very small,830

CDF is similar to the broadcast technique. If the trust threshold is very high,

the tokensets are easily dropped at each intermediate node. Hence, we choose

85% as a threshold in CDF. This threshold is neither very high nor very small.

With KAO, to set a good trade-off we have selected k = 18 and k = 27, that

is, half and 3/4 of available relationship types in [27]. In this experiment, we835
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use the Epinion dataset18. This is a who-trust-whom online social network of a

general consumer review for the site www.Epinions.com. The dataset includes

75.879 nodes and 508.837 edges. We modified the relationship information in-

cluding a relationship type and a trust value on each edge. Relationship types

are uniformly and randomly picked up from [27] based on the ontological FOAF840

vocabulary specification which provides a set of 35 relationship types. A trust

value on an edge e is also randomly generated uniformly from a range [0, 1].

Figure 21 shows that CDF flooding has the best performance. In the case of

the largest ECC key size (i.e., 512 bits), the number of tokensets flooding the

network with KAO (k ∈ {18, 27}) is approximately 2.25 times higher than with845

CDF, whereas the one with NFO is approximately 7 times higher than with

CDF; the number of traversed nodes with KAO (k = 18) is approximately 3.48

times higher than with CDF, and the number of traversed nodes with KAO (k

= 27) is approximately 2.85 times higher than with CDF; whereas, the one with

NFO is approximately 8.9 times higher than with CDF.850

9. Security Analysis

Since each ESP tokenset component is encrypted, the tokenset can be con-

sidered robust to external eavesdropping. Indeed, the adversaries able to thwart

the system are more likely to be playing the roles of participants of the proto-

col, that is, payer, payee, and intermediate nodes. Based on their behaviors, we855

classify adversaries into two types, that is, honest-but-curious, and malicious.

Honest-but-curious adversaries are intermediate nodes correctly enforcing the

protocol by at the same time also looking for extra information. In contrast,

malicious nodes might try to modify the ESP token so as to illegitimately re-

trieve information (e.g., identity, or relationship information). In this section,860

we discuss how our proposal can resist to both attacks.

18https://snap.stanford.edu/data/soc-Epinions1.html
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9.1. Honest-but-curious nodes

According to the honest-but-curious model, it is expected that nodes comply

with the proposed protocol and algorithms, by trying to infer additional private

information. In this section, we show how ESP is enough robust to avoid the865

inference of payee’s and payer’s identities, and relationship information.

Scenario 1. Inferring payee’s identity. Payee’s identity is stored into the Val-

idator component, which is encrypted with the payee’s public key. This makes

hard for an adversary to learn its plain-text value. However, an intermediate

node might try to infer the payee’s identity even without decrypting the Val-870

idator component. Indeed, since the node has the list of its neighbors identities

(i.e., IP addresses, MAC addresses), and the respective public keys, it might try

to encrypt neighbor’s identity with the corresponding public key and compare

the result with Validator content. However, we have to note that this attack is

hard to be carried out since Validator’s encryption is created based on a large875

random number generated and held by the payee (see Section 2.2), and the

timestamp, generated based on the payee’s local system and appended to the

pre-encrypted Validator. Moreover, to improve the robustness of the system,

we adopt the shuffle algorithm in [34] algorithm so as to obtain a permutation

of validator content, computed based on a set of random numbers generated880

and held by the payee. The adversaries cannot have the above mentioned local

parameters, hence, they cannot infer the information of the payee’s.

Scenario 2. Inferring payer’s identity. We recall that in SmartPay [1], in order

to elaborate the received tokensets, intermediate nodes have to know the public

key of the payer, as such they are aware of the payer identity. To avoid this885

exposure, in ESP, each payer generates a different temporary public key for every

payment transaction instead of using its real public key. Thus, any intermediate

node is not able to re-identify the payer by the used public key. According to

the proposed protocols, the receiving SMNL node can infer information about

the sender (e.g., MAC address, IP address). However, since it cannot see any890

other information as all other components in the ESP tokenset are encrypted,
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the receiving SMNL node cannot understand if the sender is indeed the payer

and thus the payer indetity.

Scenario 3. Inferring relationship information. Since SPTokenset content is

encrypted by the temporary public key of the payer, an intermediate node can-895

not access the relationship information, as it does not hold the corresponding

private key. However, since the node owns the temporary public key of payers,

he might try to encrypt a pre-defined set of values for trust and relationship

types and then compare the results with encrypted values in SPTokenset. How-

ever, let us recall that each node in ESP, including the payer, needs to locally900

generate one random number for aggregating a trust/type into SPTokenset us-

ing the homomorphic ECC encryption (see Section 2.2). Random numbers are

different at every node, which makes encryptions of the same value different.

Hence, even if a node uses the temporary public key of the payer for a statistical

analysis, it cannot infer trust/type of SPTokenset as well.905

9.2. Malicious nodes

Under this attack model, malicious nodes might try to modify the ESP to-

kenset so as to illegitimately retrieve information (e.g., identity, relationship

information). In what follows, we analyze the scenarios of these malicious at-

tacks and discuss how the proposed protocol resists on them.910

Scenario 4. Anti-replay attack. Let us consider the SSNL layer and assume

that vS1 sends a tokenset to vS2 and that this tokenset passes through node m

in the SMNL layer. Let us assume that malicious node m tries to impersonate

vS1 by reusing a copy of the tokenset that has previously passed through m. In

SecureKey, a parameter, called sessionID, is inserted and used for determining915

the processed tokensets. When vS2 receives the same tokenset, it decrypts Se-

curKey’s encryption with its private key and checks sessionID. In this case, vS2

verifies that this tokenset has been already processed, then it drops the tokenset,

avoiding thus the replay attack.
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Scenario 5. Altering tokenset content. According to this scenario, we assume920

that a malicious node wishes to modify the tokenset content, by replacing one

of the elements of the tokenset (i.e., SecureKey, SPTokenset, Validator), and/or

by simply inserting/deleting some bits, so as to invalidate the tokenset. To

detect the corrupted tokensets, we impose that the ESP is digitally signed by

the node processing the ESP tokenset. Since a malicious node does not hold the925

private key of ESP signature, it cannot generate a new one for the modified ESP

tokenset. Thus, the node receiving this ESP tokenset can detect that its content

has been maliciously modified, by validating the original digital signature.

10. Conclusions

In this paper, we proposed a privacy-preserving path discovery protocol,930

namely ESP, in support of trust preference enforcement in decentralized mobile

payment systems exploiting MANET. The ESP protocol is able to protect the

relationship information in terms of the type, depth, and trust of the discovered

paths. We propose some optimization strategies to decrease the number of

tokensets sent over MANET to improve the network performance. We prove the935

efficiency of the system by experimental results. Future work includes handling

offline nodes, and deploying a full ESP prototype into a real setting.
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[20] A. Pfitzmann, M. Köhntopp, Anonymity, unobservability, and

pseudonymitya proposal for terminology, in: Designing privacy enhancing

technologies, Springer, 2001, pp. 1–9.995

[21] K. Herrmann, M. A. Jaeger, Payflux – secure electronic payment in mobile

ad hoc networks, in: Information and Communications Security, Springer,

2004, pp. 66–78.
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